

Discovery and Synthesis of a Potent Sulfonamide ET_B Selective Antagonist

Yasuhiko Kanda,^{a,*} Tadashi Takahashi,^a Yoshitaka Araki,^a Toshiro Konoike,^{b,*} Shin-ichi Mihara^a and Masafumi Fujimoto^a

^aShionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553-0002, Japan ^bShionogi Research Laboratories, Shionogi & Co., Ltd., Amagasaki, Hyogo 660-0813, Japan

Received 1 May 2000; accepted 21 June 2000

Abstract—The synthesis and structure–activity relationships of a series of sulfonamide endothelin antagonists are described. In the course of our modification studies, we discovered ET_B selective antagonists. The most potent compound **15f** displays IC_{50} values of $1.7 \,\mu\text{M}$ and $0.002 \,\mu\text{M}$ to ET_A and ET_B receptors, respectively. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Endothelins (ET-1, ET-2, ET-3), 21-amino acid bicyclic peptides, are the most potent known vasoconstrictors.^{1,2} Two distinct G-protein coupled receptors, ET_A and ET_B, were cloned and characterized with respect to their affinity for each endothelin.^{3,4} The ET_A receptor is expressed on vascular smooth muscle cells and has high affinity for ET-1 and ET-2. The ET_B receptor is expressed on vascular endothelial and smooth muscle cells and has high affinity for all three endothelins. As these two subtypes of receptors are widely distributed in human tissues, the development of selective or non-selective endothelin antagonists is expected to be useful for the treatment of various diseases.⁵ A number of groups have reported the discovery of non-peptide endothelin antagonists since 1994. Most of them were ETA selective or non-selective antagonists, 6,7 and only recently have non-peptide ET_B selective antagonists been reported.8

In order to find low-molecular-weight non-peptide endothelin antagonists, we screened the Shionogi compound library for compounds capable of inhibiting specific [125 I]ET-1 binding. We identified sulfamethoxazole $5a^9$ and its iodide 5b as ET_A selective antagonists (Fig. 1). We then started the modification of 5b as a lead compound to enhance the binding affinity for the ET_A receptor. Our modification study led to the discovery of ET_B selective antagonists as well as non-selective and

 ET_{A} selective antagonists. In this paper, we wish to describe the discovery and synthesis of a potent ET_{B} selective antagonist.

Figure 1.

Chemistry

Sulfonamides 5a-m of 4-substituted azoles (Table 1) were synthesized by condensation of the substituted benzenesulfonyl chlorides with the 4-substituted aminoisoxazoles 4A (X=N, Y=O), 4B (X=O, Y=N) or 4substituted aminoisothiazoles 4C (X = N, Y = S), and **4D** (X = S, Y = N) (Scheme 1). As most of the azoles **4** were not readily available, we developed a general synthetic method for preparing 4-substituted aminoazoles 4 starting from 1.10 Our method was based on directed ortho-metallation and was successfully used to prepare 4-substituted aminoisoxazoles 4A bearing various substituents (R²) at the 4-position. Substituted 4-lithioisoxazole was prepared from 1A10 using alkyllithium for the directed ortho-metallation, which was reacted with various electrophiles (iodomethane, iodoethane, benzyl bromide, methyl disulfide, disulfide 9) to give 3A. Deprotection of the amino group gave 4A, from which sulfonamides

^{*}Corresponding authors. Tel.: +81-6-6458-5861; fax: +81-6-6458-0987; e-mail: yasuhiko.kanda@shionogi.co.jp, toshiro.konoike@shionogi.co.jp

Table 1.

$$R^1$$
 SO_2NH R^2 Me

					IC ₅₀ (μM)	
Compound	X	Y	\mathbb{R}^1	\mathbb{R}^2	ET_A	ETB
5a	N	О	NH ₂	Н	333	ND
5b	N	O	NH_2	I	11	>1000
5c	N	O	NH_2	C1	3.5	ND
5d	N	O	NH_2	Me	5.0	ND
5e	N	O	NH_2	Et	3.4	ND
5f	N	O	NH_2	$PhCH_2$	71	ND
5g	O	N	NH_2	Me	9.0	ND
5h	N	S	NH_2	Me	28	ND
5i	S	N	t-Bu	Me	>500	ND
5j	N	O	t-Bu	I	>100	30
5k	N	O	t-Bu	Me	28	ND
5l	N	O	t-Bu	MeS	>100	35
5m	N	O	t-Bu	3-MeO-PhS	0.53	0.30

ND, not determined.

5d–f, **5k–m** were prepared by treatment with 4-acetamido- and 4-*tert*-butyl-benzenesulfonyl chlorides. In contrast to the isoxazoles, we could not prepare isothiazole derivatives (**5h**, **5i**) efficiently by our method because a directed *ortho*-lithiation of **1C** or **1D**¹¹ competed with lithiation of the methyl group. Thus, 4-lithioisothiazoles were prepared via halogen-metal exchange reaction of bromide **2C** or iodide **2D** obtained by halogenation of the parent aminoisothiazole. The resulting lithium compounds were reacted with iodomethane to give methylated isothiazoles, which were then converted to sulfonamide **5h**, **5i**.

As a typical example of 15a-n, the synthesis of 15f is shown in Scheme 2. The isoxazole ring was constructed by 1,3-dipolar cycloaddition reaction of acetylene 7 and the nitrile oxide which was prepared from 10.12 Hydrolysis of the ester gave carboxylic acid 11 which was converted to the protected amine 12 by Curtius rearrangement. The 4-position of 12 was lithiated, and the resulting lithium compound was treated with disulfide 9¹³ to give 13. Silyloxy compound 13 was converted to an acetate, and deprotection of its Boc group gave amine 14. Sulfonylation of 14 with 4-tert-butylbenzenesulfonyl chloride, and subsequent hydrolysis of the acetate gave sulfonamide 15d. Alcohol 15d was converted to nitrile 15k, and reduction of the nitrile by DIBAH gave aldehyde 15f. Aldehyde 15f was subsequently converted to ester 15h and amide 15i through

carboxylic acid **15g** as well as to ketone **15j** and oxime **15l** (Scheme 3).

Results and Discussion

Structure–activity relationships were discussed using IC_{50} values obtained from radioreceptor binding studies. For ET_A receptor binding assay, we employed rat aortic smooth muscle A7r5 cells. For ET_B receptor binding assay, we employed COS-7 cells transfected with porcine ET_B receptor. IC_{50} data were recorded by measuring the displacement of $[^{125}I]ET$ -1 binding from ET_A receptor or $[^{125}I]ET$ -3 binding from ET_B receptor.

Table 1 shows the influences of substituent R² in the azole ring and substituent R¹ in the sulfonamide of compounds **5a-m**. We expected that introduction of a variety of groups for R² would lead to the enhancement of the binding affinity for the ET_A receptor because our lead compound **5b** had a higher binding affinity than the parent **5a**. We first investigated the influence of the R² substituent on the antagonistic activity. Halogen (**5b**, **5c**) or small alkyl groups (**5d**, **5e**) were needed for the activity, but their binding affinities were moderate. A large benzyl substituent decreased the activity (**5f**). Isomeric isoxazole ring (**5g**) or isothiazole analogues (**5h**, **5i**) had a lower binding affinity than the corresponding compound **5d**.

We next replaced the hydrophilic amino group R^1 with the hydrophobic *tert*-butyl group, and investigated the effect of R^2 . Although compound 5j-l showed no or decreased binding affinity for the ET_A receptor, compounds 5j and 5l were found to be ET_B selective antagonists with moderate affinity. This indicated that introduction of a bulky hydrophobic substituent R^1 is effective for ET_B affinity. Therefore, in order to increase the binding affinity for both subtypes, we modified the 4-position and introduced the 3-methoxy phenylthio group by an analogy to the known non-selective endothelin antagonist. 7a By this modification, we obtained the non-selective antagonist 5m with improved IC_{50} values in the sub-micromolar range for both subtypes.

Next, we selected **5m** as the second lead compound for a non-selective endothelin antagonist, and modified the 5-position of the isoxazole ring (Table 2). One carbon homologation of **5m** decreased the affinity for both subtypes (**15a**). Therefore, we decided to introduce a functional group with the expectation of specific interaction

Scheme 1. (a) *n*-BuLi, THF, -78 °C to rt; (b) electrophile, THF, -78 °C; (c) Br₂, AcONa, AcOH, rt; (d) ICl, AcOH, rt; (e) NaH, THF, rt; (f) *t*-BuLi, THF, -78 °C; (g) MeI, THF, -78 °C; (h) TFA, rt; (i) 4-AcNHPhSO₂Cl, pyridine, rt; (j) aq NaOH, MeOH, reflux; (k) 4-*t*-BuPhSO₂Cl, pyridine, rt.

Scheme 2. (a) t-BuSiMe₂Cl, imidazole, CH₂Cl₂, rt, 97%; (b) DMSO, 85°C, 80%; (c) Et₃N, 7, rt, 76%; (d) aq NaOH, MeOH, rt, 81%; (e) SOCl₂, pyridine, CH₂Cl₂, 0°C; (f) NaN₃, acetone–H₂O, 0°C; (g) t-BuOH, toluene, reflux, 41% (three steps); (h) n-BuLi, THF, -78°C to rt; (i) 9, THF, -78°C, 67% (two steps); (j) n-Bu₄NF, THF, rt; (k) Ac₂O, DMAP, pyridine, CH₂Cl₂, rt; (l) TFA, anisole, rt, 86% (three steps); (m) 4-t-BuPhSO₂Cl, DMAP, pyridine, 50°C, 64%; (n) aq NaOH, MeOH–THF, rt, 92%; (o) MsCl, pyridine, 0°C; (p) aq NaOH, MeOH–THF, rt; (q) NaCN, DMF, 80°C; (q) DIBAH, toluene, -78°C to rt, 75% (four steps).

Scheme 3. (a) PDC, DMF, rt, 79%; (b) SOCl₂, pyridine, Et₂O, 0°C; (c) MeOH, 0°C, 37% (two steps); (d) 28% aq NH₃, 0°C, 24%; (e) MeLi, THF, -78°C to 0°C; (f) PDC, DMF, rt, 29% (two steps); (g) NH₂OH HCl, EtOH–pyridine, rt, 100%.

between the functional group and the receptor. We first introduced a hydroxyalkyl group ($(CH_2)_nOH$) which had both hydrogen bond donating and accepting properties and optimized the length of the alkyl chain (n=1-4, 15b–e). Of these compounds, 15d (n=3) showed the best affinity for both subtypes. Next, we introduced other functional groups, keeping the length of the alkyl chain unchanged (n=3, 15f–l). Interestingly, aldehyde 15f had highly improved affinity and selectivity for the ET_B receptor. The IC₅₀ values of 15f were 1.7 μ M and 0.002 μ M for ET_A and ET_B receptors, respectively, and

Table 2.

			IC ₅₀ (μM)		ET _B selectivity (IC ₅₀ ET _A /IC ₅₀ ET _B)	
Compound	n	R	ET_A	ETB	(1C50 L1A/1C50 L1B)	
5m	1	Н	0.53	0.30	1.8	
15a	2	H	0.80	2.8	0.3	
15b	1	OH	6.2	0.56	11	
15c	2	OH	0.77	0.43	1.8	
15d	3	OH	0.32	0.14	2.3	
15e	4	OH	0.63	0.24	2.6	
15f	3	CHO	1.7	0.002	850	
15g	3	CO_2H	4.3	0.50	8.6	
15h	3	CO ₂ Me	0.40	0.31	1.3	
15i	3	CONH ₂	6.3	0.24	26	
15j	3	$COCH_3$	1.3	0.40	3.3	
15k	3	CN	1.3	0.52	2.5	
15l	3	CH=NOH	1.5	0.085	18	
15m	2	CHO	0.38	0.50	0.8	
15n	4	СНО	1.4	0.020	70	

the ET_B selectivity (IC₅₀ ET_A/IC₅₀ ET_B) was 850. This compound was found to be one of the most potent ET_B selective antagonists reported so far.⁸ Amide **15i** and oxime **15l** were also ET_B selective antagonists, although they had a lower activity than **15f**. Other derivatives, such as carboxylic acid **15g**, ester **15h**, ketone **15j**, and nitrile **15k** had decreased binding affinity for both subtypes compared with **15d**, and their ET_B selectivities were low. Aldehyde analogues with shorter (n = 2, **15m**)

or longer (n=4, **15n**) alkyl spacers had lower activity and selectivity for the ET_B receptor than **15f**. These findings demonstrate that the substituent in the 5-position of the isoxazole ring plays a crucial role in the ET_B receptor binding. Adequate spatial arrangement of the specific functional group is needed for the high affinity binding to the ET_B receptor. Our results indicate that compound **15f** displays specific interaction between its aldehyde group and the ET_B receptor binding site.

In conclusion, we have discovered a potent ET_B selective antagonist **15f**. Unfortunately, **15f** had insufficient oral bioavailability. However, it should be useful for understanding the role of the ET_B receptor in pathological conditions. Further modification of **15f** is in progress and will be reported elsewhere.

References and Notes

- 1. Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Yazaki, Y.; Goto, K.; Masaki, T. *Nature* **1988**, *332*, 411–445.
- 2. Inoue, A.; Yanagisawa, M.; Kimura, S.; Kasuya, Y.; Miyauchi, T.; Goto, K.; Masaki, T. *Proc. Acad. Sci. USA* **1989**, *86*, 2863–2867.
- 3. Arai, H.; Hori, S.; Aramori, I.; Ohkubo, H.; Nakanishi, S. *Nature* **1990**, *348*, 730–732.
- 4. Sakurai, T.; Yanagisawa, M.; Takuwa, Y.; Miyazaki, Y.; Kimura, S.; Goto, K.; Masaki, T. Nature 1990, 348, 732–735. 5. Webb, M. L.; Meek, T. D. Med. Res. Rev. 1997, 17, 17–67. 6. (a) Stein, P. D.; Hunt, J. T.; Floyd, D. M.; Moreland, S.; Dickinson, K. E. J.; Mitchell, C.; Liu, E. C.-K.; Webb, M. L.; Murugesan, N.; Dickey, J.; McMullen, D.; Zhang, R.; Lee, V. G.; Serafino, R.; Delaney, C.; Schaeffer, T. R.; Kozlowski, M. J. Med. Chem. 1994, 37, 329-331. (b) Doherty, A. M.; Patt, W. C.; Edmunds, J. J.; Berryman, K.; Reisdoph, B. R.; Plummer, M.; Shahripour, A.; Lee, C.; Cheng, X.-M.; Walker, D. M.; Haleen, S.; Keiser, J. A.; Flynn, M. A.; Welch, K. M.; Hallak, H. O.; Taylor, D. G.; Reynolds, E. E. J. Med. Chem. 1995, 38, 1259-1263. (c) Winn, M.; von Geldern, T. W.; Opgenorth, T. J.; Jae, H.-S.; Tasker, A. S.; Boyd, S. A.; Kester, J. A.; Mantei, R. A.; Bal, R.; Sorensen, B. K.; Wu-Wong, J. R.; Chiou, W. J.; Dixon, D. B.; Novosad, E. I.; Hernandes, L.; Marsh, K. C. J. Med. Chem. 1996, 39, 1039-1048. (d) Riechers, H.; Albrecht, H. P.; Amberg, W.; Baumann, E.; Bernard, H.; Bohm, H. J.; Klinge, D.; Kling, A.; Muller, S.; Rashack, M.; Unger, L.; Walker, N.; Wernrt, W. J. Med. Chem. 1996, 39, 2123-2128. (e) Sakurawi, K.; Yasuda, F.; Tozyo, T.; Nakamura, M.; Sato, T.; Kikuchi, J.; Terui, Y.; Ikenishi, Y.; Iwata, T.; Takahashi, K.; Konoike, T.; Mihara, S.; Fujimoto, M. Chem. Pharm. Bull. 1996, 44, 343–351. (f)

Wu, C.; Chan, M. F.; Stavros, F.; Raju, B.; Okun, I.; Castillo, R. S. J. Med. Chem. 1997, 40, 1682–1689.

7. (a) Clozel, M.; Breu, V.; Gray, G. A.; Kalina, B.; Loffler, B. M.; Burri, K.; Cassal, J. M.; Hirth, G.; Muuler, M.; Neidhart, W.; Ramuz, H. J. Pharmacol. Exp. Ther. 1994, 270, 228–235. (b) Elliott, J. D.; Lago, M. A.; Cousins, R. D.; Gao, A.; Leber, J. D.; Erhard, K. F.; Nambi, P.; Elshourbagy, N. A.; Kumar, C.; Lee, J. A.; Bean, J. W.; DeBrosse, C. W.; Eggleston, D. S.; Brooks, D. P.; Feuerstein, G.; Ruffolo, R. R. J.; Weinstock, J.; Gleason, J. G.; Peishoff, C. E.; Ohlstein, E. H. J. Med. Chem. 1994, 37, 1553–1557. (c) Walsh, T. F.; Fitch, K. J.; Chakravarty, K.; Williams, D. L.; Murphy, K. A.; Nolan, N. A.; O'Brien, J. A.; Lis, E. V.; Pettibone, D. J.; Kivlighn, S. D.; Gabel, R. A.; Zingaro, G. J.; Krause, S. M.; Siegl, P. K. S.; Clineschmidt, B. V.: Greenlee, W. J. 208th ACS National Meeting, Washington, DC, August 1994; Medi 145. (d) Jae, H. S.; Winn, M.; Dixon, D. B.; Marsh, K. C.; Nguyen, B.; Opgenorth, T. J.; von Geldern, T. W. J. Med. Chem. 1997, 40, 3217-3227.

8. (a) Chan, M. F.; Kois, A.; Verner, E. J.; Raju, B. G.; Castillo, R. S.; Wu, C.; Okun, I.; Stavros, F. D.; Balaji, V. N. Bioorg. Med. Chem. 1998, 6, 2301–2316. (b) Mederski, W. W. K. R.; Osswald, M.; Dorsch, D.; Christadler, M.; Schmitges, C.-J.; Wilm, C. Bioorg. Med. Chem. Lett. 1999, 9, 619–622. (c) von Geldern, T. W.; Tasker, A. S.; Sorensen, B. K.; Winn, M.; Szczepankiewicz, B. G.; Dixon, D. B.; Chiou, W. J.; Wang, L.; Wessale, J. L.; Adler, A.; Marsh, K. C.; Nguyen, B.; Opgenorth, T. J. J. Med. Chem. 1999, 42, 3668–3678. (d) Liu, G.; Kozmina, N. S.; Winn, M.; von Geldern, T. W.; Chiou, W. J.; Dixon, D. B.; Nguyen, B.; Marsh, K. C.; Opgenorth, T. J. J. Med. Chem. 1999, 42, 3679–3689.

- 9. Kano, H.; Ogata, K. Ann. Rep. Shionogi Res. Lab. **1957**, 7, 1. See C.A. **1957**, 51, 17889.
- 10. Konoike, T.; Kanda, Y.; Araki, Y. *Tetrahedron Lett.* **1996**, *37*, 3339–3342.
- 11. 5-(Boc-amino)-3-methylisothiazole **1D** was prepared from 5-amino-3-methylisothiazole hydrochloride and di-*tert*-butyl dicarbamate in CH₂Cl₂ and pyridine. 3-(Boc-amino)-5-methylisothiazole **1C** was prepared as described in Scheme 4. See Honma, T.; Tada, Y. *Heterocycles* **1977**, 6, 2925–2931, Terent'ev, A. P.; Grandreng, I. I.; Shibiryakova, D. V.; Kost, A. N. *Zhur. Obshchei. Khim.* **1960**, *30*, 2925–2931.

Scheme 4. (a) KMnO₄, benzene–acetone, rt, 67%; (b) ClCO₂Et, Et₃N then NaN₃, H₂O–acetone; (c) *t*-BuOH, toluene, rt, 70%.

- 12. Kozikowski, A. P.; Adamczyk, M. J. Org. Chem. 1983, 48, 366–372
- 13. Yiannios, C. N.; Karabinos, J. V. J. Org. Chem. 1963, 28, 3246–3248.